The Welfare Effects of Property Taxes

Zong Huang October 24, 2024

U.S. funding for local public goods heavily relies on property taxes

\$630 billion of state and local property taxes collected in 2021

- Distort incentives to remodel and build housing
- Tiebout model: local governments should charge **head taxes**
- Oates (1972): "Since the tax price paid by the consumer reflects accurately the cost of the public goods he consumes, [a head tax] introduces no incentives for inefficient behaviour."

Lump-sum taxes are unpopular and perceived as unfair

- · Equity gains to de facto redistribution via property taxes
- California is the only state with lump-sum taxes (due to Proposition 13)

This project

1. Measure nominal intrajurisdictional redistribution via property taxes

- Bottom income quartile: households pay \$1,000 less per year
- Top income quartile: households pay \$2,075 more per year

2. Develop general equilibrium model of housing markets

- · Households choose both quantity and quality of housing
- Elasticity of housing expenditure share with respect to price: 0.52

3. Simulate counterfactual welfare under different tax regimes

· Quantify equity-efficiency trade-off by benchmarking to head tax

Literature

Property taxes

 Avenancio-Leon and Howard (2022); Agrawal et al. (2022); Lutz (2015); Scotchmer (2002); Bruckner (2000); Oates (1999); Zodrow and Mieszkowski (1986); Hamilton (1976); Tiebout (1956)

Place-based redistribution

• Gaubert et al. (2021); Davis and Gregory (2021)

Quantitative spatial economics

• Baum Snow and Lu (2023); Couture et al. (2021); Diamond (2016); Redding and Sturm (2016); Suárez Serrato and Zidar (2016); Ahlfeldt et al. (2015); Allen et al. (2015); Allen & Arkolakis (2014)

Data

Data sources

- Primary:
 - Corelogic Tax: parcel-level property taxes from 2007-2019
 - Corelogic Deeds: property transactions from 2000-2019
 - Home Mortgage Disclosure Act (HMDA): mortgage-level income data from 1990-2019
 - Corelogic-HMDA merge following Bayer et al. (2024) Comparison to ACS

• Supplementary:

- American Community Survey (ACS)
- Zillow Housing Data (Zillow)
- Consumer Expenditure Survey (CEX)
- · Census Transportation Planning Project (CTPP)
- · Quarterly Census of Employment and Wages (QCEW)
- Stanford Education Data Archive (SEDA)
- · National Center for Education Statistics (NCES)
- Baum-Snow & Lu (2024)
- Individual Income Tax Statistics (IRS)

U.S. property taxation

- · County governments administratively assess property values and collect taxes
- · State governments set assessment ratios
- · Local governments (e.g., cities) set tax rates

Most tax jurisdictions are delineated by school district boundaries

Remaining variation due to property tax exemptions and measurement error

Local governments adjust tax rates so per parcel revenue is stable

· Price: repeat sales index; tax amount: repeat parcel index

Within school district, richer households pay more property taxes

· Nominally: richer households subsidize local public goods for poorer households

Richer households consume both more housing and higher quality housing

· Sq. ft. and price per sq. ft. residualized by school district

Two behavioral effects from property taxes:

- 1. Distort consumption away from housing to non-housing (intensive margin)
 - · Standard tax result: excess burden depends on supply and demand elasticities

- 2. Distort location choice (extensive margin)
 - · Tax paid by a given household may not reflect cost of providing public good

 \implies Need model to determine economic incidence

Model of housing markets

Housing demand

- Unit mass of households, J neighborhoods
- Household *i* of type θ derives utility from neighborhood *j*:

· Subject to budget constraint:

$$\underbrace{W_{\theta}}_{\text{Wage}} - \underbrace{T_{j}}_{\text{Head tax}} = \underbrace{r_{Hj}}_{\text{Rent}} \underbrace{(1 + \tau_{Hj})}_{\text{Ad valorem tax}} h_{Hj} + r_{Lj} (1 + \tau_{Lj}) h_{Lj} + p_j c$$

Housing demand

Indirect utility for household *i* of type θ :

$$u_{ij} = \log \left((\mathbf{W}_{\theta} - T_j) \left(\frac{\alpha_{\theta}^{\eta} \alpha_{j}^{\eta} \underbrace{\tilde{\mathbf{f}}_{\theta j}^{1-\eta}}_{\text{Rent index}} (1 + \tau_j)^{1-\eta} + \mathbf{p}_j^{1-\eta} \right)^{\frac{1}{\eta-1}} \right) + \beta G_j + A_{\theta j} + \sigma \varepsilon_{ij}$$

where:

$$\tilde{r}_{\theta j} = \left(\frac{r_{Hj}}{1 - \delta_{\theta j}}\right)^{1 - \delta_{\theta j}} \left(\frac{r_{Lj}}{\delta_{\theta j}}\right)^{\delta_{\theta j}}$$

Housing supply

• Landowner in each neighborhood *j* with marginal cost:

$$egin{aligned} c_{Hj}\left(x
ight) &= H_{Hj}^{0\,-rac{1}{\gamma_{Hj}}}x^{rac{1}{\gamma_{Hj}}}x^{rac{1}{\gamma_{Hj}}} \ c_{Lj}\left(x
ight) &= H_{Lj}^{0\,-rac{1}{\gamma_{Lj}}}x^{rac{1}{\gamma_{Lj}}} \end{aligned}$$

• Assume landowners are price-takers:

$$\underbrace{\log (H_{Hj})}_{\text{Housing supply}} = \log (H_{Hj}^{0}) + \underbrace{\gamma_{Hj}}_{\substack{\text{Housing supply} \\ \text{elasticity}}} \log (r_{Hj})}_{\substack{\text{Housing supply} \\ \text{elasticity}}} \log (H_{Lj}) = \log (H_{Lj}^{0}) + \gamma_{Lj} \log (r_{Lj})$$

Local government budget constraint

- Assume fixed local public good G_i and constant (per household) marginal cost MC_i
- Denote $N_{\theta j}$ as the number of households of type θ in neighborhood j
- Balanced budget constraint:

$$T_{j} + \sum_{\theta} \frac{N_{\theta j}}{\sum_{\theta} N_{\theta j}} \left(h_{\theta L j}^{*} r_{L j} \tau_{L j} + h_{\theta H j}^{*} r_{H j} \tau_{H j} \right) = MC_{j}$$

Estimating housing demand: intensive margin

Impute owner's equivalent rent from housing transactions

· Assume houses are priced via discounted cash flow:

· Price-to-rent ratio:

$$\frac{p}{r} = \tau + \delta$$

· Implicit rental tax rate:

$$au p = rac{ au}{ au + \delta} r$$

Calculate metro-level price-to-rent ratios for single-family homes (data: Zillow)

Imputed rents imply similar expenditure shares to CEX

• Expenditure share for shelter and furnishings (e.g., excluding utilities)

Model-implied reduced-form equation

Housing expenditure share for household of type θ in neighborhood *j*:

$$\underbrace{\log\left(\frac{W_{\theta} - p_{j}c_{\theta}}{p_{j}c_{\theta}}\right)}_{\text{Relative}}_{\text{expenditure share}} = \underbrace{(1 - \eta)\log\left(\tilde{r}_{\theta j}\right) + (1 - \eta)\log\left(1 + \tau_{j}\right) - (1 - \eta)\log\left(p_{j}\right)}_{\text{Prices}} - \underbrace{\eta\log\left(\alpha_{\theta}\right) - \eta\log\left(\alpha_{j}\right)}_{\text{Taste}}$$

where:

Identifying quality parameter

• Low quality: bottom tercile; high quality: top tercile

Identifying elasticity of substitution

• Assume we observe neighborhood *j* in two different time periods. Then:

$$\Delta \log \left(\frac{w_{\theta} - p_{j}c_{\theta}}{p_{j}c_{\theta}}\right) = (1 - \eta) \Delta \log \left(\tilde{r}_{\theta j}\right) + \underbrace{(1 - \eta) \Delta \log \left(1 + \tau_{j}\right) - \eta \Delta \log \left(p_{j}\right)}_{\text{"County FE"}} - \underbrace{\eta \Delta \log \left(\alpha_{\theta}\right)}_{\text{Income FE}} - \eta \Delta \log \left(\alpha_{j}\right)$$

- Instrument for $\Delta \log (\tilde{r}_{\theta j})$ with Bartik shock B_j (data: CTPP, QCEW)
- Identification assumption:
 - · Bartik shock affects housing demand on the extensive margin, but not the intensive margin
 - Formally: $B_j \not\perp \Delta A_{\theta j}, B_j \perp \Delta \log(\alpha_j)$

Identifying elasticity of substitution

	$\log{(s)} - \log{(1-s)}$						log	$\log(s)$	
	Cross-sectional		Longitudinal				Longitudinal		
	OLS	OLS	OLS	IV	OLS	IV	OLS	IV	
log p	0.995	0.860	0.988	1.035	0.595	0.746	0.458	0.518	
	(0.047)	(0.049)	(0.014)	(0.090)	(0.022)	(0.122)	(0.016)	(0.081)	
Bartik IV				1.890		1.866		1.866	
				(0.287)		(0.326)		(0.326)	
F-stat				563.0		696.3		696.3	
									
Zip-income group	Х	Х	Х	Х	Х	Х	Х	Х	
Income group FF	х	Х	Х	х	х	х	Х	х	
County FE		X			X	X	X	X	

Longitudinal binscatter

Albouy et al. (2016): $\frac{\partial \log(s)}{\partial \log(p)} \approx 0.6$

Identifying taste parameters

Estimating housing demand: extensive margin

Intuition

• Model-implied comparative statics:

$$\frac{\partial \log (r)}{\partial G} \approx \frac{\sigma^{-1}}{\gamma + \eta + (1 - \eta + \sigma^{-1}) \underbrace{\overline{S}}_{\text{Average expenditure share}} \beta$$

Trace out demand curve by comparing price changes given identical demand shocks but different supply curves

Intuition

How do we get exogenous change in local public goods?

- Estimate value of local public goods using border RDD a la Black (1999)
 - Majority of property taxes go towards schools, an *excludable* local public good
 - Proxy school district quality using test scores (data: NCES, SEDA)
 - Compare houses across school district borders within the same county, controlling for tax rates
 and housing characteristics
- · Estimate for all elementary school districts in the U.S
- Identification assumption:
 - Discrete changes in unobserved quality at school district borders are uncorrelated with housing supply elasticity (i.e., $\Delta \xi \perp \gamma$)
 - · Use housing supply elasticities from Baum-Snow and Lu (2024)

i : sale, t : year, b : border

Standard hedonic regression

· Covariates: property tax rate and housing characteristics (e.g., house age, lot sq. ft.)

Heterogeneity by housing supply elasticity

• Non-linear least squares $\implies \sigma^{-1} = 1.75 (0.21)$

Structural model

Set-up

- 1. Demand parameters: prior estimates
- 2. Supply parameters: housing supply elasticities from Baum-Snow and Lu (2024)
- 3. Cost of public good: calculate mean per residential parcel using Corelogic Tax
- 4. Household shares: calculate school district-level shares by income group using IRS
- 5. Budget: convert income to post-tax budget using ACS

Redistribution moments

Counterfactuals

Evaluate counterfactual welfare of alternative tax regimes in general equilibrium:

- 1. Baseline: ad valorem tax
- 2. Head tax: lump-sum tax per household

Neighborhood-level change in supply

Average change in utility by income group

• 1: 0-25k, 2: 25-50k, 3: 50-75k, 4: 75-100k, 5: 100-200k, 6: 200k+

Next steps

Next steps

Structural model:

- Endogenize household wages (or shut down cross-metro migration)
- · Decompose welfare effects into direct vs. behavioral
- · Consider counterfactuals that are explicitly policy-relevant

• Data:

- · Use Equifax income + Corelogic MLS to observe renters
- · Misc. validation / robustness checks

Appendix

HMDA income vs. ACS income Back

Identifying elasticity of substitution Back

Model-implied nominal redistribution Back

• 1: 0-25k, 2: 25-50k, 3: 50-75k, 4: 75-100k, 5: 100-200k, 6: 200k+